Mechanistic Insights Revealed by the Crystal Structure of a Histidine Kinase with Signal Transducer and Sensor Domains
نویسندگان
چکیده
Two-component systems (TCSs) are important for the adaptation and survival of bacteria and fungi under stress conditions. A TCS is often composed of a membrane-bound sensor histidine kinase (SK) and a response regulator (RR), which are relayed through sequential phosphorylation steps. However, the mechanism for how an SK is switched on in response to environmental stimuli remains obscure. Here, we report the crystal structure of a complete cytoplasmic portion of an SK, VicK from Streptococcus mutans. The overall structure of VicK is a long-rod dimer that anchors four connected domains: HAMP, Per-ARNT-SIM (PAS), DHp, and catalytic and ATP binding domain (CA). The HAMP, a signal transducer, and the PAS domain, major sensor, adopt canonical folds with dyad symmetry. In contrast, the dimer of the DHp and CA domains is asymmetric because of different helical bends in the DHp domain and spatial positions of the CA domains. Moreover, a conserved proline, which is adjacent to the phosphoryl acceptor histidine, contributes to helical bending, which is essential for the autokinase and phosphatase activities. Together, the elegant architecture of VicK with a signal transducer and sensor domain suggests a model where DHp helical bending and a CA swing movement are likely coordinated for autokinase activation.
منابع مشابه
Elucidating the Energetics of Bacterial Signal Transduction: Insights From Phoq
Bacteria transduce signals across the membrane using two-component systems, consisting of a membranespanning sensor histidine kinase and a cytoplasmic response regulator. The histidine kinase, PhoQ, serves as a master regulator of virulence response in S. typhimurium and E. coli. It also is inhibited by divalent cations, particularly Mg2+. While the periplasmic sensor domain of this protein has...
متن کاملStructural basis of histidine kinase autophosphorylation deduced by integrating genomics, molecular dynamics, and mutagenesis.
Signal transduction proteins such as bacterial sensor histidine kinases, designed to transition between multiple conformations, are often ruled by unstable transient interactions making structural characterization of all functional states difficult. This study explored the inactive and signal-activated conformational states of the two catalytic domains of sensor histidine kinases, HisKA and HAT...
متن کاملDomain analysis of ArcS, the hybrid sensor kinase of the Shewanella oneidensis MR-1 Arc two-component system, reveals functional differentiation of its two receiver domains.
In all species of the genus Shewanella, the redox-sensing Arc two-component system consists of the response regulator ArcA, the sensor kinase ArcS, and the separate phosphotransfer protein HptA. Compared to its counterpart ArcB in Escherichia coli, ArcS has a significantly different domain structure. Resequencing and reannotation revealed that in the N-terminal part, ArcS possesses a periplasmi...
متن کاملStructure of the entire cytoplasmic portion of a sensor histidine-kinase protein.
The large majority of histidine kinases (HKs) are multifunctional enzymes having autokinase, phosphotransfer and phosphatase activities, and most of these are transmembrane sensor proteins. Sensor HKs possess conserved cytoplasmic phosphorylation and ATP-binding kinase domains. The different enzymatic activities require participation by one or both of these domains, implying the need for differ...
متن کاملA unique GTP-dependent sporulation sensor histidine kinase in Bacillus anthracis.
The Bacillus anthracis BA2291 gene codes for a sensor histidine kinase involved in the induction of sporulation. Genes for orthologs of the sensor domain of the BA2291 kinase exist in virulence plasmids in this organism, and these proteins, when expressed, inhibit sporulation by converting BA2291 to an apparent phosphatase of the sporulation phosphorelay. Evidence suggests that the sensor domai...
متن کامل